Statistics (12th Edition)

Published by Pearson
ISBN 10: 0321755936
ISBN 13: 978-0-32175-593-3

Chapter 2 - Methods for Describing Sets of Data - Exercises 2.71 - 2.89 - Applying the Concepts - Basic - Page 65: 2.84a

Answer

Range =$29$ Sample variance = $s^{2}=75.71$ Sample standard deviation = $s = 8.7$

Work Step by Step

Recall the shortcut formula for calculating the variance ($s^{2}$)$:$ $$s^{2}=\frac{\sum x_{i}^{2}-\frac{(\sum x_{i})^{2}}{n}}{n-1}$$ Create a table of the number of books read by students marked with an $A$, with which we compute $\displaystyle \sum x_{i}$ and $\displaystyle \sum x_{i}^{2}$: $$ \begin{array}{rrr} x & \rm Grade & x^{2}\\ \hline 53 & \mathrm{A} & 2809\\ 42 & \mathrm{A} & 1764\\ 40 & \mathrm{A} & 1600\\ 39 & \mathrm{A} & 1521\\ 34 & \mathrm{A} & 1156\\ 34 & \mathrm{A} & 1156\\ 30 & \mathrm{A} & 900\\ 24 & \mathrm{A} & 576\\ \hline\rm Sum=296 & & 11482 \end{array}$$ Plug in the given values (there are $n=8$ data items): $$\begin{align*} s^{2}&= \displaystyle \frac{11482-\frac{(296)^{2}}{8}}{8-1} & & \\ & =75.71\\\\ s&= \sqrt{75.71} =8.7 \end{align*}$$ The range is the difference between the largest and smallest data item: $$53-24=29$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.