Essentials of Statistics (5th Edition)

Published by Pearson
ISBN 10: 0-32192-459-2
ISBN 13: 978-0-32192-459-9

Chapter 8 - Hypothesis Testing - 8-4 Testing a Claim about a Mean - Page 417: 32

Answer

There is sufficient evidence to support that the mean wight of discarded plastic is more than 1.8.

Work Step by Step

$H_{0}:\mu=1.8$. $H_{a}:\mu>1.8.$ Hence the value of the test statistic: $\frac{\overline{x}-\mu}{s/\sqrt n}=\frac{1.911-1.8}{1.065/\sqrt{62}}=0.82.$ The P-value is the probability of z being bigger than 0.82 is 1 minus the probability of the z-score being less than 0.82, hence:P=1-0.7939=0.2061. If the P-value is less than $\alpha$, which is the significance level, then this means the rejection of the null hypothesis. Hence:P is more than $\alpha=0.05$, because it is 0.2061, hence we fail to reject the null hypothesis. Hence we can say that there is sufficient evidence to support that the mean wight of discarded plastic is more than 1.8.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.