Essentials of Statistics (5th Edition)

Published by Pearson
ISBN 10: 0-32192-459-2
ISBN 13: 978-0-32192-459-9

Chapter 7 - Estimates and Sample Sizes - 7-3 Estimating a Population Mean - Page 355: 39

Answer

$\mu$ is between -25.46 and 106.04. We can see that the outlier really affects the interval, so normally it should be removed when constructing such an interval.

Work Step by Step

The mean can be counted by summing all the data and dividing it by the number of data: $\frac{300+6.5+...+17.5}{10}=40.75.$ Standard deviation=$\sqrt{\frac{\sum (x-\mu)^2}{n-1}}=\sqrt{\frac{(300-40.75)^2+...+(17.5-40.75)^2}{9}}=91.28.$ $\alpha=1-0.95=0.05.$ $\sigma$ is unknown, hence we use the t-distribution with $df=sample \ size-1=10-1=9$ in the table. $t_{\alpha/2}=t_{0.025}=2.262.$ Margin of error:$t_{\alpha/2}\cdot\frac{s}{\sqrt {n}}=2.262\cdot\frac{91.28}{\sqrt{10}}\approx65.29.$ Hence the confidence interval:$\mu$ is between 40.75-65.29=-25.46 and 40.75+65.29=106.04. We can see that the outlier really affects the interval, so normally it should be removed when constructing such an interval.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.