Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 8 - Review - Exercises - Page 622: 38

Answer

$(\frac{1}{2}+\frac{\sqrt 3}{2}i)^{20}=-\frac{1}{2}-\frac{\sqrt 3}{2}i$

Work Step by Step

$z=\frac{1}{2}+\frac{\sqrt 3}{2}i$ $r=|z|=\sqrt {a^2+b^2}=\sqrt {(\frac{1}{2})^2+(\frac{\sqrt 3}{2})^2}=\sqrt {\frac{1}{4}+\frac{3}{4}}=1$ $tan~θ=\frac{b}{a}=\frac{\frac{\sqrt 3}{2}}{\frac{1}{2}}=\sqrt 3$ $θ=\frac{2\pi}{3}$ $z=r(cos~θ+i~sin~θ)$ $z=1(cos\frac{2\pi}{3}+i~sin\frac{2\pi}{3})$ $z^{20}=(\frac{1}{2}+\frac{\sqrt 3}{2}i)^{20}=[1(cos\frac{2\pi}{3}+i~sin\frac{2\pi}{3})]^{20}$ $z^{20}=1^{20}[cos(20·\frac{2\pi}{3})+i~sin(20·\frac{2\pi}{3})]$ $z^{20}=cos(20·\frac{2\pi}{3})+i~sin(20·\frac{2\pi}{3})$ $z^{20}=cos\frac{40\pi}{3}+i~sin\frac{40\pi}{3}$ $\frac{40\pi}{3}=6(2\pi)+\frac{4\pi}{3}$ So: $z^{20}=cos\frac{4\pi}{3}+i~sin\frac{4\pi}{3}$ $z^{20}=-\frac{1}{2}-\frac{\sqrt 3}{2}i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.