Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 70

Answer

$\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\sin\theta-\csc\theta}{\cos\theta-\cot\theta}$

Work Step by Step

$\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\sin\theta-\csc\theta}{\cos\theta-\cot\theta}$ On the right side of the equation, replace $\csc\theta$ by $\dfrac{1}{\sin\theta}$ and $\cot\theta$ by $\dfrac{\cos\theta}{\sin\theta}$: $\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\sin\theta-\dfrac{1}{\sin\theta}}{\cos\theta-\dfrac{\cos\theta}{\sin\theta}}$ Evaluate the subtractions on the right side: $\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\dfrac{\sin^{2}\theta-1}{\sin\theta}}{\dfrac{\sin\theta\cos\theta-\cos\theta}{\sin\theta}}$ Evaluate the division on the right: $\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\sin\theta(\sin^{2}\theta-1)}{\sin\theta(\sin\theta\cos\theta-\cos\theta)}$ $\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\sin^{2}\theta-1}{\sin\theta\cos\theta-\cos\theta}$ Take out common factor $\cos\theta$ from the denominator on the right: $\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\sin^{2}\theta-1}{\cos\theta(\sin\theta-1)}$ Change the sign of the numerator and the sign of the denominator on the right: $\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{1-\sin^{2}\theta}{\cos\theta(1-\sin\theta)}$ Replace $1-\sin^{2}\theta$ by $\cos^{2}\theta$: $\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\cos^{2}\theta}{\cos\theta(1-\sin\theta)}$ Simplify and the identity will be proved: $\dfrac{\cos\theta}{1-\sin\theta}=\dfrac{\cos\theta}{1-\sin\theta}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.