Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 8 - Polar Coordinates; Vectors - Chapter Review - Review Exercises - Page 656: 54

Answer

$ \frac{27}{10}i+\frac{9}{10}j, -\frac{7}{10}i+\frac{21}{10}j$

Work Step by Step

1. Let the two required vectors be $\vec x=ai+bj, \vec y=ci+dj$, we have $a+c=2, b+d=3,$ 2. Let $\vec x\parallel \vec w$, we have $\frac{b}{a}=\frac{1}{3}$, thus $a=3b,$ 3. Let $\vec y\perp\vec w$, we have dot product $(3)(c)+(1)(d)=0$, thus $d=-3c,$ 4. Use the above results, we have $3a+3c=6$ or $9b-d=6$, plus $b+d=3$, 5. Solve the above to get $10b=9$, thus $b=\frac{9}{10}$ and $d=\frac{21}{10}$ 6. Find other values $a=\frac{27}{10}$ and $c=-\frac{7}{10}$ 7. Thus the two vectors $\vec x=\frac{27}{10}i+\frac{9}{10}j, \vec y=-\frac{7}{10}i+\frac{21}{10}j$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.