Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.3 Exponential Functions - 4.3 Assess Your Understanding - Page 310: 123

Answer

If $f(\alpha{x})=a^{\alpha{x}}=\underbrace{a^x \times a^x \times a^x . . . \times a^x}=\underbrace{f(x)\times f(x) \times f(x) ... \times f(x)}=[f(x)]^{\alpha}\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \alpha \text{ times} \quad \quad \quad \quad \quad \quad \quad \quad \alpha \text{ times}$.

Work Step by Step

Given: $f(x)=a^{x}$...........$(1)$ Then, $f(\alpha x)= a^{\alpha x}$...........[from (1)] $f(\alpha x)= \underbrace{{a^{x}\times a^{x}\times ....\times a^{x}}}\\ \quad \quad \quad \quad \quad \text{$(\alpha$ times})$........[by laws of exponents] $f(\alpha x)= {f(x)\times f(x)\times ....\times f(x) } \quad \text{$(\alpha$ times})$ ..........[by using (1)] $f(\alpha x)=[f(x)]^{\alpha}$.........[by using laws of exponents] Hence Proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.