Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 3 - Polynomial and Rational Functions - Section 3.2 The Real Zeros of a Polynomial Function - 3.2 Assess Your Understanding - Page 223: 4

Answer

$\left\{\dfrac{-1-\sqrt{13}}{2}, \dfrac{-1+\sqrt{13}}{2}\right\}$

Work Step by Step

To find the zeros of the given function, set $f(x)=0$ then solve for $x$ using the Quadratic Formula: $$0=x^2+x-3$$ In this equation, we have: $a=1, b=1, \ c=-3$ Find the zeros using the Quadratic Formula to obtain: $x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}$. $x=\dfrac{-1\pm\sqrt{1^2-4(1)(-3)}}{2(1)}\\ =\dfrac{-1\pm\sqrt{1+12}}{2}\\=\dfrac{-1\pm\sqrt{13}}{2}\\$ Thus, the zeros are: $\left\{\dfrac{-1-\sqrt{13}}{2}, \dfrac{-1+\sqrt{13}}{2}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.