Answer
(a) See graph, opens up, vertex $(-1,0)$, axis of symmetry $x=-1$, y-intercept $(0,1)$, x-intercept(s) $(-1,0)$.
(b) domain $(-\infty,\infty)$, range $[0,\infty)$.
(c) increasing on $(-1,\infty)$, decreasing on $(-\infty,-1)$.
Work Step by Step
(a) See graph for $y=x^2+2x+1=(x+1)^2+0$, we can find that the graph opens up, vertex $(-1,0)$, axis of symmetry $x=-1$, y-intercept $(0,1)$, x-intercept(s) $(-1,0)$.
(b) We can determine the domain $(-\infty,\infty)$, range $[0,\infty)$.
(c) The function is increasing on $(-1,\infty)$, decreasing on $(-\infty,-1)$.