Answer
$n(A) = 40$
Work Step by Step
From the formula $n(A\cup B) = n(A) + n(B) - n(A \cap B)$ solve for $n(A)$ to obtain:
$n(A\cup B) = n(A) + n(B) - n(A \cap B)
\\n(A\cup B) +n(A \cap B) - n(B)=n(A)
\\n(A)=n(A\cup B) +n(A \cap B) - n(B)$
Using the formula above gives:
$n(A)= n(A\cup B) +n(A \cap B) - n(B)
\\n(A)= 50+ 10 -20
\\n(A)= 40$