Answer
$B\approx51^\circ$, $C\approx94^\circ$, $c\approx19.1$
Work Step by Step
Step 1. Based on the given conditions, using the Law of Sines, we have
$\frac{sinB}{15}=\frac{sin35^\circ}{11}$
Thus
$sinB\approx0.7821$
and
$B=asin(0.7821)\approx51^\circ$ (acute)
Step 2. We can find the angle as
$C=180-35-51\approx94^\circ$
Step 3. Using the Law of Sines, we have
$\frac{sinC}{c}=\frac{sin35^\circ}{11}$
Thus
$c=\frac{11sin94^\circ}{sin35^\circ}\approx19.1$