Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.3 - Matrix Operations and Their Applications - Exercise Set - Page 919: 71

Answer

The product of a matrix with a scalar number is defined as multiplication of that scalar with each element in the matrix.

Work Step by Step

The product of a matrix with a scalar number is defined as multiplication of that scalar with each element in the matrix, that is, if a matrix $A={{\left[ {{a}_{ij}} \right]}_{m\times n}}$, then multiplication with scalar k is as follows: $kA={{\left[ k{{a}_{ij}} \right]}_{m\times n}}$. Consider the $2\times 2$ matrix $\left( \begin{matrix} a & b \\ c & d \\ \end{matrix} \right)$ and a scalar k: $k\left( \begin{matrix} a & b \\ c & d \\ \end{matrix} \right)=\left( \begin{matrix} ka & kb \\ kc & kd \\ \end{matrix} \right)$ Example: Consider the following matrix: $A=\left[ \begin{matrix} 3 & -9 \\ 5 & 4 \\ \end{matrix} \right]$ To obtain the product of -2 and A, compute as follows: $-2\left( A \right)=-2\left[ \begin{matrix} 3 & -9 \\ 5 & 4 \\ \end{matrix} \right]$ $\begin{align} & -2\left( A \right)=\left[ \begin{matrix} 3\left( -2 \right) & -9\left( -2 \right) \\ 5\left( -2 \right) & 4\left( -2 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -6 & 18 \\ -10 & -8 \\ \end{matrix} \right] \end{align}$ Therefore, the product of -2 and A is $-2A=\left[ \begin{matrix} -6 & 18 \\ -10 & -8 \\ \end{matrix} \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.