Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Mid-Chapter Check Point - Page 920: 3

Answer

The solution to the system of equations is $ x=-\frac{4}{7}-\frac{4}{7}t,y=\frac{5}{7}+\frac{5}{7}t,z=t $.

Work Step by Step

Consider the following system of equations: $\begin{align} & x-2y+2z=-2 \\ & 2x+3y-z=1 \end{align}$ Express the above system in the form of a matrix as below: $\left[ \begin{matrix} 1 & -2 & 2 & -2 \\ 2 & 3 & -1 & 1 \\ \end{matrix} \right]$ Using the elementary row operations we will obtain the echelon form of a matrix: ${{R}_{2}}\to {{R}_{2}}+\left( -2 \right){{R}_{1}}$ gives, $\left[ \begin{matrix} 1 & -2 & 2 & -2 \\ 0 & 7 & -5 & 5 \\ \end{matrix} \right]$ ${{R}_{2}}\to \frac{1}{7}{{R}_{2}}$ gives, $\left[ \begin{matrix} 1 & -2 & 2 & -2 \\ 0 & 1 & -\frac{5}{7} & \frac{5}{7} \\ \end{matrix} \right]$ Rewrite the system corresponding to echelon form of the matrix: $ x-2y+2z=-2$ (I) $ y-\frac{5}{7}z=\frac{5}{7}$ (II) Since, the system has two equations and three variables, one variable can be chosen arbitrarily. Let $ z=t $, then equation (II) gives, $ y-\frac{5}{7}\left( t \right)=\frac{5}{7}$ Simplify, $ y=\frac{5}{7}+\frac{5}{7}t $ Substitute the values of y and z in equation (I) to obtain: $ x-2\left( \frac{5}{7}+\frac{5}{7}t \right)+2\left( t \right)=-2$ It can be further simplified as: $ x=-\frac{4}{7}-\frac{4}{7}t $ Hence, the solution to the system is $ x=-\frac{4}{7}-\frac{4}{7}t,y=\frac{5}{7}+\frac{5}{7}t,z=t $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.