Answer
The solution of the system is $\left( x,y,z \right)=\left( 1,3,2 \right)$.
Work Step by Step
We know that according to Cramer’s rule,
$ x=\frac{{{D}_{x}}}{D}$, $ y=\frac{{{D}_{y}}}{D}$, $ z=\frac{{{D}_{z}}}{D}$.
Where, $ D $ is the determinant of the matrix that consists of the coefficients of the variables in the equations
$ D=$ $\left| \begin{matrix}
1 & 1 & 1 \\
3 & 4 & -7 \\
2 & -1 & 3 \\
\end{matrix} \right|$
${{D}_{x}}$, acts as determinant in the numerator which is obtained by replacing the x coefficient in D with the right side of the equation having the constants.
${{D}_{x}}=$ $\left| \begin{matrix}
6 & 1 & 1 \\
1 & 4 & -7 \\
5 & -1 & 3 \\
\end{matrix} \right|$
${{D}_{y}}$, acts as determinant in the numerator which is obtained by replacing the y coefficient in D with the right side of the equation having the constants.
${{D}_{y}}=$ $\left| \begin{matrix}
1 & 6 & 1 \\
3 & 1 & -7 \\
2 & 5 & 3 \\
\end{matrix} \right|$
${{D}_{z}}$, acts as determinant in the numerator which is obtained by replacing the z coefficient in D with the right side of the equation having the constants.
${{D}_{z}}=$ $\left| \begin{matrix}
1 & 1 & 6 \\
3 & 4 & 1 \\
2 & -1 & 5 \\
\end{matrix} \right|$.
Solve the four determinants and compute the value of D as given below:
$\begin{align}
& D=\left| \begin{matrix}
1 & 1 & 1 \\
3 & 4 & -7 \\
2 & -1 & 3 \\
\end{matrix} \right| \\
& =1\left\{ 4\left( 3 \right)-\left( \left( -1 \right)\left( -7 \right) \right) \right\}-1\left\{ 3\left( 3 \right)-2\left( -7 \right) \right\}+1\left\{ 3\left( -1 \right)-2\left( 4 \right) \right\} \\
& =\left( 12-7 \right)-\left( 9+14 \right)+\left( -3-8 \right) \\
& =5-23-11 \\
& =-29
\end{align}$
Compute the value of ${{D}_{x}}$ as given below:
$\begin{align}
& {{D}_{x}}=\left| \begin{matrix}
6 & 1 & 1 \\
1 & 4 & -7 \\
5 & -1 & 3 \\
\end{matrix} \right| \\
& =6\left\{ 4\left( 3 \right)-\left( -1 \right)\left( -7 \right) \right\}-1\left( 1\left( 3 \right)-5\left( -7 \right) \right)+1\left( 1\left( -1 \right)-5\left( 4 \right) \right) \\
& =6\left( 12-7 \right)-\left( 3+35 \right)+\left( -1-20 \right) \\
& =30-38-21 \\
& =-29
\end{align}$
Compute the value of ${{D}_{y}}$ as given below:
$\begin{align}
& {{D}_{y}}=\left| \begin{matrix}
1 & 6 & 1 \\
3 & 1 & -7 \\
2 & 5 & 3 \\
\end{matrix} \right| \\
& =1\left\{ 1\left( 3 \right)-5\left( -7 \right) \right\}-6\left\{ 3\left( 3 \right)-2\left( -7 \right) \right\}+1\left( 3\left( 5 \right)-2\left( 1 \right) \right) \\
& =\left( 3+35 \right)-6\left( 9+14 \right)+\left( 15-2 \right) \\
& =38-138+13 \\
& =-87
\end{align}$
Compute the value of ${{D}_{z}}$ as given below:
$\begin{align}
& {{D}_{z}}=\left| \begin{matrix}
1 & 1 & 6 \\
3 & 4 & 1 \\
2 & -1 & 5 \\
\end{matrix} \right| \\
& =1\left\{ 4\left( 5 \right)-\left( -1 \right)\left( 1 \right) \right\}-1\left\{ 3\left( 5 \right)-2\left( 1 \right) \right\}+6\left\{ 3\left( -1 \right)-2\left( 4 \right) \right\} \\
& =\left( 20+1 \right)-\left( 15-2 \right)+6\left( -3-8 \right) \\
& =21-13-66 \\
& =-58
\end{align}$
Put the values in the formula $ x=\frac{{{D}_{x}}}{D}$, $ y=\frac{{{D}_{y}}}{D}$, $ z=\frac{{{D}_{z}}}{D}$ to solve for x, y, and z as given below:
$\begin{align}
& x=\frac{{{D}_{x}}}{D} \\
& =\frac{-29}{-29} \\
& =1
\end{align}$
$\begin{align}
& y=\frac{{{D}_{y}}}{D} \\
& =\frac{-87}{-29} \\
& =3
\end{align}$
Then,
$\begin{align}
& z=\frac{{{D}_{z}}}{D} \\
& =\frac{-58}{-29} \\
& =2
\end{align}$
Thus, the solution of the system of equations is $\left( x,y,z \right)=\left( 1,3,2 \right)$.