Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 853: 82

Answer

The simplified logarithmic expression is ${{\log }_{8}}\left( \frac{\sqrt[4]{x}}{64{{y}^{3}}} \right)=\frac{1}{4}{{\log }_{8}}x-3{{\log }_{8}}y-2$.

Work Step by Step

Apply the logarithm rule ${{\log }_{c}}\left( \frac{a}{b} \right)={{\log }_{c}}a-{{\log }_{c}}b $ to simplify as shown below: $\log {{\log }_{8}}\left( \frac{\sqrt[4]{x}}{64{{y}^{3}}} \right)={{\log }_{8}}\left( \sqrt[4]{x} \right)-{{\log }_{8}}\left( 64{{y}^{3}} \right)$ Apply the logarithm rule ${{\log }_{c}}\left( a\times b \right)={{\log }_{c}}a+{{\log }_{c}}b $ to simplify as shown below: $\begin{align} & {{\log }_{8}}\left( \frac{\sqrt[4]{x}}{64{{y}^{3}}} \right)={{\log }_{8}}\left( \sqrt[4]{x} \right)-{{\log }_{8}}\left( 64{{y}^{3}} \right) \\ & ={{\log }_{8}}\left( \sqrt[4]{x} \right)-{{\log }_{8}}\left( {{y}^{3}} \right)-{{\log }_{8}}\left( 64 \right) \\ & ={{\log }_{8}}{{x}^{\frac{1}{4}}}-{{\log }_{8}}{{y}^{3}}-{{\log }_{8}}{{8}^{2}} \end{align}$ We use the logarithm rule ${{\log }_{c}}{{a}^{b}}=b{{\log }_{c}}a $ to simplify as shown below: $\begin{align} & {{\log }_{8}}\left( \frac{\sqrt[4]{x}}{64{{y}^{3}}} \right)={{\log }_{8}}{{x}^{\frac{1}{4}}}-{{\log }_{8}}{{y}^{3}}-{{\log }_{8}}{{8}^{2}} \\ & =\frac{1}{4}{{\log }_{8}}x-3{{\log }_{8}}y-2{{\log }_{8}}8 \end{align}$ Apply the logarithm rule ${{\log }_{c}}c=1$ to simplify, $\begin{align} & {{\log }_{8}}\left( \frac{\sqrt[4]{x}}{64{{y}^{3}}} \right)=\frac{1}{4}{{\log }_{8}}x-3{{\log }_{8}}y-2{{\log }_{8}}8 \\ & =\frac{1}{4}{{\log }_{8}}x-3{{\log }_{8}}y-2\left( 1 \right) \\ & =\frac{1}{4}{{\log }_{8}}x-3{{\log }_{8}}y-2 \end{align}$ Thus, the simplified logarithmic expression is ${{\log }_{8}}\left( \frac{\sqrt[4]{x}}{64{{y}^{3}}} \right)=\frac{1}{4}{{\log }_{8}}x-3{{\log }_{8}}y-2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.