Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Exercise Set - Page 852: 77

Answer

The area of the rectangle is $18$ square units.

Work Step by Step

The system of nonlinear equations formed is: $\left\{ \begin{align} & {{x}^{2}}+{{y}^{2}}=41 \\ & xy=20 \end{align} \right.$ We use the substitution method to solve the system of equations. Now, consider Equation (II): $\begin{align} & xy=20 \\ & x=\frac{20}{y} \end{align}$ Substitute the value of x in equation (I) to find the value of y: $\begin{align} & {{x}^{2}}+{{y}^{2}}=41 \\ & {{\left( \frac{20}{y} \right)}^{2}}+{{y}^{2}}=41 \\ & \frac{400}{{{y}^{2}}}+{{y}^{2}}=41 \\ & {{y}^{4}}-41{{y}^{2}}+400=0 \end{align}$ Factorize the above equation to solve for the solutions as shown below: $\begin{align} & {{y}^{4}}-41{{y}^{2}}+400=0 \\ & {{y}^{4}}-25{{y}^{2}}-16{{y}^{2}}+400=0 \\ & {{y}^{2}}\left( {{y}^{2}}-25 \right)-16\left( {{y}^{2}}-25 \right)=0 \\ & \left( {{y}^{2}}-25 \right)\left( {{y}^{2}}-16 \right)=0 \end{align}$ By using the algebraic identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ to simplify the equation, we get: $\begin{align} & \left( {{y}^{2}}-25 \right)\left( {{y}^{2}}-16 \right)=0 \\ & \left( {{y}^{2}}-{{5}^{2}} \right)\left( {{y}^{2}}-{{4}^{2}} \right)=0 \\ & \left( y-5 \right)\left( y+5 \right)\left( y-4 \right)\left( y+4 \right)=0 \end{align}$ Then, the solution of the equation is $ y=5,y=-5$, $ y=4$, and $ y=-4$. Put the value of y in the second equation to find the value of x. For $ y=5$, $\begin{align} & xy=20 \\ & x\left( 5 \right)=20 \\ & x=\frac{20}{5} \\ & x=4 \end{align}$ For $ y=-5$, $\begin{align} & xy=20 \\ & x\left( -5 \right)=20 \\ & x=\frac{20}{-5} \\ & x=-4 \end{align}$ For $ y=4$, $\begin{align} & xy=20 \\ & x\left( 4 \right)=20 \\ & x=\frac{20}{4} \\ & x=5 \end{align}$ For $ y=-4$, $\begin{align} & xy=20 \\ & x\left( -4 \right)=20 \\ & x=\frac{20}{-4} \\ & x=-5 \end{align}$ The pairs of solutions for the system of equations is as shown below: $\left\{ \left( 4,5 \right),\left( -4,-5 \right),\left( 5,4 \right),\left( -5,-4 \right) \right\}$. Consider the sides of the rectangle passing through points $\left\{ \left( 4,5 \right),\left( -4,-5 \right),\left( 5,4 \right),\left( -5,-4 \right) \right\}$ is, Length: $\sqrt{{{\left( 5-\left( -4 \right) \right)}^{2}}+{{\left( 4-\left( -5 \right) \right)}^{2}}}=9\sqrt{2}$ Width: $\sqrt{{{\left( 5-4 \right)}^{2}}+{{\left( 4-5 \right)}^{2}}}=\sqrt{2}$ Calculate the area of the rectangle my multiplying the length with the breadth as shown below: $9\sqrt{2}\times \sqrt{2}=18$ Hence, the area of a rectangle is 18 square units.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.