Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.4 - Systems of Nonlinear Equations in Two Variables - Concept and Vocabulary Check - Page 850: 4

Answer

The solution set is $\left\{ \left( 2,\sqrt{3} \right),\left( 2,-\sqrt{3} \right),\left( -2,\sqrt{3} \right),\left( -2.-\sqrt{3} \right) \right\}$.

Work Step by Step

Let us consider the provided system: $\begin{align} & {{x}^{2}}+4{{y}^{2}}=16 \\ & {{x}^{2}}-{{y}^{2}}=1 \end{align}$ And subtract the second equation form the first to obtain, $\begin{align} & {{x}^{2}}+4{{y}^{2}}=16 \\ & {{x}^{2}}-{{y}^{2}}=1 \\ & \underline{-+-} \\ \end{align}$ $\begin{align} & 5{{y}^{2}}=15 \\ & {{y}^{2}}=3 \\ & y=\pm \sqrt{3} \end{align}$ Substitute $y=\sqrt{3}$ in the second equation and solve for x: $\begin{align} & {{x}^{2}}-{{\left( \sqrt{3} \right)}^{2}}=1 \\ & {{x}^{2}}=4 \\ & x=\pm 2 \end{align}$ Substitute $y=-\sqrt{3}$ in the second equation and solve for x: $\begin{align} & {{x}^{2}}+{{\left( -\sqrt{3} \right)}^{2}}=1 \\ & {{x}^{2}}=4 \\ & x=\pm 2 \end{align}$ Thus, the solution set is $\left\{ \left( 2,\sqrt{3} \right),\left( 2,-\sqrt{3} \right),\left( -2,\sqrt{3} \right),\left( -2.-\sqrt{3} \right) \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.