Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.3 - Partial Fractions - Exercise Set - Page 841: 28

Answer

The partial function is, $\frac{1}{4\left( x-1 \right)}+\frac{1}{4{{\left( x-1 \right)}^{2}}}-\frac{1}{4\left( x+1 \right)}+\frac{1}{4{{\left( x+1 \right)}^{2}}}$.

Work Step by Step

$\frac{{{x}^{2}}}{{{\left( x-1 \right)}^{2}}{{\left( x+1 \right)}^{2}}}=\frac{A}{\left( x-1 \right)}+\frac{B}{{{\left( x-1 \right)}^{2}}}+\frac{C}{\left( x+1 \right)}+\frac{D}{{{\left( x+1 \right)}^{2}}}$. Now, take L.C.M on right side: $\frac{{{x}^{2}}}{{{\left( x-1 \right)}^{2}}{{\left( x+1 \right)}^{2}}}=\frac{A\left( x-1 \right){{\left( x+1 \right)}^{2}}+B{{\left( x+1 \right)}^{2}}+C{{\left( x-1 \right)}^{2}}\left( x+1 \right)+D{{\left( x-1 \right)}^{2}}}{{{\left( x-1 \right)}^{2}}{{\left( x+1 \right)}^{2}}}$ By eliminating the denominators from both sides, we get: $\begin{align} & {{x}^{2}}=A\left( x-1 \right){{\left( x+1 \right)}^{2}}+B{{\left( x+1 \right)}^{2}}+C{{\left( x-1 \right)}^{2}}\left( x+1 \right)+D{{\left( x-1 \right)}^{2}} \\ & =A\left( x-1 \right)\left( {{x}^{2}}+1+2x \right)+B({{x}^{2}}+1+2x)+C\left( {{x}^{2}}+1-2x \right)\left( x+1 \right)+D\left( {{x}^{2}}+1-2x \right) \\ & =A\left( {{x}^{3}}+x+2{{x}^{2}}-{{x}^{2}}-1-2x \right)+B{{x}^{2}}+B+2Bx+C\left( {{x}^{3}}+{{x}^{2}}+x+1-2{{x}^{2}}-2x \right)+D{{x}^{2}}+D-2Dx \\ & =A\left( {{x}^{3}}+{{x}^{2}}-x-1 \right)+B{{x}^{2}}+B+2Bx+C\left( {{x}^{3}}-{{x}^{2}}-x+1 \right)+D{{x}^{2}}+D-2Dx \end{align}$ That is ${{x}^{2}}=\left( A+C \right){{x}^{3}}+\left( A+B-C+D \right){{x}^{2}}+\left( -A+2B-C-2D \right)x+\left( -A+B+C+D \right)$ Then, compare the coefficient of ${{x}^{3}},{{x}^{2}},x$ and constant term: $A+C=0$ (I) $A+B-C+D=1$ (II) $-A+2B-C-2D=0$ (III) $-A+B+C+D=0$ (IV) So, in the equation (III) put the value of equation (I): $\begin{align} & -\left( A+C \right)+2B-2D=0 \\ & 2B-2D=0 \\ & B-D=0 \end{align}$ $B=D$ (V) And put equation (V) in equation (II): $A-C+2B=1$ (VI) And put equation (V) into equation (IV): $-A+C+2B=0$ (VII) And add equation (VI) and equation (VII): $\begin{align} & 4B=1 \\ & B=\frac{1}{4}=D \end{align}$ Then, put the value of B in equation (VI): $\begin{align} & A-C+2\left( \frac{1}{4} \right)=1 \\ & A-C=1-\frac{1}{2} \end{align}$ $A-C=\frac{1}{2}$ (VIII) And add equation (VIII) with equation (I): $\begin{align} & 2A=\frac{1}{2} \\ & A=\frac{1}{4} \end{align}$ Also, put the value of A in equation (I): $\begin{align} & \frac{1}{4}+C=0 \\ & C=\frac{-1}{4} \end{align}$ Therefore, $\frac{{{x}^{2}}}{{{\left( x-1 \right)}^{2}}{{\left( x+1 \right)}^{2}}}=\frac{\frac{1}{4}}{\left( x-1 \right)}+\frac{\frac{1}{4}}{{{\left( x-1 \right)}^{2}}}+\frac{\frac{-1}{4}}{\left( x+1 \right)}+\frac{\frac{1}{4}}{{{\left( x+1 \right)}^{2}}}$. Thus, the partial fraction of the provided expression is $\frac{1}{4\left( x-1 \right)}+\frac{1}{4{{\left( x-1 \right)}^{2}}}-\frac{1}{4\left( x+1 \right)}+\frac{1}{4{{\left( x+1 \right)}^{2}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.