Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Section 7.2 - Systems of Linear Equations in Three Variables - Exercise Set - Page 829: 7

Answer

The solution of the system is $\left( 2,-1,1 \right)$.

Work Step by Step

Let us consider the given equation: $4x-y+2z=11$ …… (I) $x+2y-z=-1$ …… (II) $2x+2y-3z=-1$ …… (III) $2\times $ equation (II), add equation (1) $\begin{align} & 4x-y+2z=11 \\ & 2x+4y-2z=-2 \\ & \overline{6x+3y=9\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\ \end{align}$ $2x+y=3$ …… (IV) Equation (III) subtract $3\times $ Equation (II): $\begin{align} & 3x+6y-3z=-3 \\ & 2x+2y-3z=-1 \\ & -\text{ }-\text{ }+\text{ }+ \\ & \overline{\,\,\,\,\,\,\,x+4y=-2\,\,\,\,\,\,} \\ \end{align}$ $x+4y=-2$ …… (V) Now equation (IV) subtract $2\times $ equation (V): $\begin{align} & 2x+y=3 \\ & 2x+8y=-4 \\ & -\text{ }-\text{ }+ \\ & \overline{\begin{align} & \,\,\,\,\,\,\,-7y=7\,\,\,\,\,\, \\ & y=-1 \\ \end{align}} \\ \end{align}$ Now, putting the value of $y=-1$ in equation (IV): $\begin{align} & 2x-1=3 \\ & 2x=4 \\ & x=2 \end{align}$ And, putting the value of x and y in equation (I): $\begin{align} & 4\left( 2 \right)-\left( -1 \right)+2z=11 \\ & 8+1+2z=11 \\ & 2z=2 \\ & z=1 \end{align}$ Thus, the order triple $\left( 2,-1,1 \right)$ satisfies the three equations.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.