Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Test - Page 800: 10

Answer

The required polar form is $ z=2\left( \cos \frac{5\pi }{6}+i\sin \frac{5\pi }{6} \right)$

Work Step by Step

Using $ r=\sqrt{{{a}^{2}}+{{b}^{2}}}$ and, $\begin{align} & \tan \theta =\frac{b}{a} \\ & =\frac{1}{-\sqrt{3}} \\ & \tan \theta =-\frac{1}{\sqrt{3}} \end{align}$ So, $\begin{align} & r=\sqrt{{{a}^{2}}+{{b}^{2}}} \\ & =\sqrt{{{\left( -\sqrt{3} \right)}^{2}}+{{1}^{2}}} \\ & =\sqrt{3+1} \\ & =2 \end{align}$ Also, $\tan 30{}^\circ =\frac{1}{\sqrt{3}}$ and $\theta $ lies in the second quadrant. So, $\begin{align} & \theta =180{}^\circ -30{}^\circ \\ & =150{}^\circ \end{align}$ Hence the polar form of $ z=-\sqrt{3}+i $ is: $\begin{align} & z=r\left( \cos \theta +i\sin \theta \right) \\ & =r\left( \cos 150{}^\circ +i\sin 150{}^\circ \right) \\ & z=2\left( \cos \frac{5\pi }{6}+i\sin \frac{5\pi }{6} \right) \end{align}$ So, $ z=2\left( \cos \frac{5\pi }{6}+i\sin \frac{5\pi }{6} \right)$ Therefore, the required polar form is $ z=2\left( \cos \frac{5\pi }{6}+i\sin \frac{5\pi }{6} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.