Answer
$\mathbf{v}$ and $\mathbf{w}$ are not orthogonal.
Work Step by Step
Dot product of $\mathbf{v}$ and $\mathbf{w}$ can be obtained as,
$\begin{align}
& \mathbf{v}\cdot \mathbf{w}=\left( 3\mathbf{i}+0\mathbf{j} \right)\cdot \left( -4\mathbf{i}+0\mathbf{j} \right) \\
& =3\cdot \left( -4 \right)+0\cdot 0 \\
& =-12+0 \\
& =-12
\end{align}$
As the dot product of $\mathbf{v}$ and $\mathbf{w}$ is not zero, thus, $\mathbf{v}$ and $\mathbf{w}$ are not orthogonal.
Hence, $\mathbf{v}$ and $\mathbf{w}$ are not orthogonal.