Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.6 - Vectors - Concept and Vocabulary Check - Page 781: 10

Answer

If $\mathbf{v}={{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j}$, and $\mathbf{w}={{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j}$, then $\mathbf{v}+\mathbf{w}=\left( {{a}_{1}}+{{a}_{2}} \right)\mathbf{i}+\left( {{b}_{1}}+{{b}_{2}} \right)\mathbf{j}$ $\mathbf{v}-\mathbf{w}=\left( {{a}_{1}}-{{a}_{2}} \right)\mathbf{i}+\left( {{b}_{1}}-{{b}_{2}} \right)\mathbf{j}$ $k\mathbf{v}=k{{a}_{1}}\mathbf{i}+k{{a}_{2}}\mathbf{j}$

Work Step by Step

The values of the above expression can be calculated by substituting the values of $\mathbf{v}={{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j}$, and $\mathbf{w}={{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j}$ as below: $\begin{align} & \mathbf{v}+\mathbf{w}={{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j}+{{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j} \\ & =\left( {{a}_{1}}+{{a}_{2}} \right)\mathbf{i}+\left( {{b}_{1}}+{{b}_{2}} \right)\mathbf{j} \end{align}$ $\begin{align} & \mathbf{v}-\mathbf{w}=\left( {{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j} \right)-\left( {{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j} \right) \\ & =\left( {{a}_{1}}-{{a}_{2}} \right)\mathbf{i}+\left( {{b}_{1}}-{{b}_{2}} \right)\mathbf{j} \end{align}$ And, $\begin{align} & k\mathbf{v}=k\left( {{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j} \right) \\ & =k{{a}_{1}}\mathbf{i}+k{{a}_{2}}\mathbf{j} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.