Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 767: 40

Answer

The multiplication of the complex numbers in the polar form is $30\left( \cos \frac{11\pi }{12}+i\sin \frac{11\pi }{12} \right)$.

Work Step by Step

Consider any complex number, given by, $\begin{align} & {{z}_{1}}={{r}_{1}}\left( \cos {{\theta }_{1}}+i\sin {{\theta }_{1}} \right) \\ & {{z}_{2}}={{r}_{2}}\left( \cos {{\theta }_{2}}+i\sin {{\theta }_{2}} \right) \\ \end{align}$ For a complex number in polar form, the multiplication is calculated as, ${{z}_{1}}\times {{z}_{2}}={{r}_{1}}{{r}_{2}}\left( \cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)+i\sin \left( {{\theta }_{1}}+{{\theta }_{2}} \right) \right)$ …… (1) The polar form after the multiplication of the complex numbers, $\begin{align} & {{z}_{1}}=3\left( \cos \frac{5\pi }{8}+i\sin \frac{5\pi }{8} \right) \\ & {{z}_{2}}=10\left( \cos \frac{\pi }{16}+i\sin \frac{\pi }{16} \right) \\ \end{align}$ Multiply it using (1), $\begin{align} & {{z}_{1}}\times {{z}_{2}}={{r}_{1}}{{r}_{2}}\left( \cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)+i\sin \left( {{\theta }_{1}}+{{\theta }_{2}} \right) \right) \\ & {{z}_{1}}\times {{z}_{2}}=3\times 10\left( \cos \left( \frac{5\pi }{8}+\frac{\pi }{16} \right)+i\sin \left( \frac{5\pi }{8}+\frac{\pi }{16} \right) \right) \\ & =30\left( \cos \frac{11\pi }{12}+i\sin \frac{11\pi }{12} \right) \end{align}$ Therefore, The multiplication of the complex numbers in the polar form is $30\left( \cos \frac{11\pi }{12}+i\sin \frac{11\pi }{12} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.