Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.3 - Polar Coordinates - Exercise Set - Page 744: 107

Answer

See the explanation below.

Work Step by Step

The distance between two points in rectangular coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given by $d=\sqrt{{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}}$ Substitute ${{x}_{1}}={{r}_{1}}\cos {{\theta }_{1}}$, ${{y}_{1}}={{r}_{1}}\sin {{\theta }_{1}}$ and ${{x}_{2}}={{r}_{2}}\cos {{\theta }_{2}}$, ${{y}_{2}}={{r}_{2}}\sin {{\theta }_{2}}$ to get $\begin{align} & d=\sqrt{{{\left( {{r}_{2}}\sin {{\theta }_{2}}-{{r}_{1}}\sin {{\theta }_{1}} \right)}^{2}}+{{\left( {{r}_{2}}\cos {{\theta }_{2}}-{{r}_{1}}\sin {{\theta }_{1}} \right)}^{2}}} \\ & =\sqrt{{{r}_{2}}^{2}{{\sin }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\sin }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}sin{{\theta }_{1}}\sin {{\theta }_{2}}+{{r}_{2}}^{2}{{\cos }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\cos }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\cos {{\theta }_{1}}\cos {{\theta }_{2}}} \\ & =\sqrt{{{r}_{1}}^{2}\left( {{\sin }^{2}}{{\theta }_{1}}+{{\cos }^{2}}{{\theta }_{1}} \right)+{{r}_{2}}^{2}\left( {{\sin }^{2}}{{\theta }_{2}}+{{\cos }^{2}}{{\theta }_{2}} \right)-2{{r}_{1}}{{r}_{2}}\left( \cos {{\theta }_{1}}\cos {{\theta }_{2}}+\sin {{\theta }_{1}}\sin {{\theta }_{2}} \right)} \end{align}$ Using ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ and $\operatorname{cosAcosB}+sinAsinB=cos\left( A-B \right)$ we will simplify the above equation as below: $d=\sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}-2{{r}_{1}}{{r}_{2}}\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}$ Hence, $d=\sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}-2{{r}_{1}}{{r}_{2}}\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}$ has been proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.