Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.4 - Product-to-Sum and Sum-to-Product Formulas - Exercise Set - Page 691: 60

Answer

See the explanation below.

Work Step by Step

One of the sum-to-product formulas is $\sin \alpha +\sin \beta =2\sin \frac{\alpha +\beta }{2}\cos \frac{\alpha -\beta }{2}$. Therefore, $\sin 3x+\sin x$ can be written as given below: $\sin 3x+\sin x=2\sin \frac{3x+x}{2}\cos \frac{3x-x}{2}$ Another sum-to-product formula is $\cos \alpha +\cos \beta =2\cos \frac{\alpha +\beta }{2}\cos \frac{\alpha -\beta }{2}$. Thus, $\cos 3x+\cos x$ can be written as given below: $\cos 3x+\cos x=2\cos \frac{3x+x}{2}\cos \frac{3x-x}{2}$ Now, consider the left-hand side of the provided expression: $\frac{\sin 2x+\left( \sin 3x+\sin x \right)}{\cos 2x+\left( \cos 3x+\cos x \right)}$ And the expression can be simplified as shown below: $\begin{align} & \frac{\sin 2x+\left( \sin 3x+\sin x \right)}{\cos 2x+\left( \cos 3x+\cos x \right)}=\frac{\sin 2x+2\sin \left( \frac{3x+x}{2} \right)\cos \left( \frac{3x-x}{2} \right)}{\cos 2x+2\cos \left( \frac{3x+x}{2} \right)\cos \left( \frac{3x-x}{2} \right)} \\ & =\frac{\sin 2x+2\sin \left( \frac{4x}{2} \right)\cos \left( \frac{2x}{2} \right)}{\cos 2x+2\cos \left( \frac{4x}{2} \right)\cos \left( \frac{2x}{2} \right)} \\ & =\frac{\sin 2x+2\sin 2x\cos x}{\cos 2x+2\cos 2x\cos x} \end{align}$ Then, by taking out the common term, that is $\sin 2x$, in the numerator and $\cos 2x$ in the denominator, we get: $\begin{align} & \frac{\sin 2x+2\sin 2x\cos x}{\cos 2x+2\cos 2x\cos x}=\frac{\sin 2x\left( 1+2\cos x \right)}{\cos 2x\left( 1+2\cos x \right)} \\ & =\frac{\sin 2x}{\cos 2x} \end{align}$ Now, using one of the quotient identities of trigonometry, $\tan x=\frac{\sin x}{\cos x}$, the expression can be further written as: $\frac{\sin 2x}{\cos 2x}=\tan 2x$ Thus, the left-hand side of the expression is equal to the right-hand side: $\frac{\sin 2x+\left( \sin 3x+\sin x \right)}{\cos 2x+\left( \cos 3x+\cos x \right)}=\tan 2x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.