Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.4 - Product-to-Sum and Sum-to-Product Formulas - Exercise Set - Page 689: 23

Answer

See the explanation below.

Work Step by Step

One of the sum-to-product formulas is $\sin \alpha -\sin \beta =2\sin \frac{\alpha -\beta }{2}\cos \frac{\alpha +\beta }{2}$. Thus, $\sin 3x-\sin x$ can be written as given below: $\sin 3x-\sin x=2\sin \frac{3x-x}{2}\cos \frac{3x+x}{2}$ One of the sum-to-product formulas is $\cos \alpha -\cos \beta =-2\sin \frac{\alpha +\beta }{2}\sin \frac{\alpha -\beta }{2}$. Thus, $\cos 3x-\cos x$ can be written as given below: $\cos 3x-\cos x=-2\sin \frac{3x+x}{2}\sin \frac{3x-x}{2}$ Now, consider the left side of the given expression: $\frac{\sin 3x-\sin x}{\cos 3x-\cos x}$ The expression can be simplified as given below: $\begin{align} & \frac{\sin 3x-\sin x}{\cos 3x-\cos x}=\frac{2\sin \left( \frac{3x-x}{2} \right)\cos \left( \frac{3x+x}{2} \right)}{-2\sin \left( \frac{3x+x}{2} \right)\sin \left( \frac{3x-x}{2} \right)} \\ & =\frac{2\sin \left( \frac{2x}{2} \right)\cos \left( \frac{4x}{2} \right)}{-2\sin \left( \frac{4x}{2} \right)\sin \left( \frac{2x}{2} \right)} \\ & =\frac{2\sin x\cos 2x}{-2\sin 2x\sin x} \\ & =-\frac{\cos 2x}{\sin 2x} \end{align}$ Now, using one of the quotient identities of trigonometry, which is $\cot x=\frac{\cos x}{\sin x}$, the expression can be further written as: $-\frac{\cos 2x}{\sin 2x}=-\cot 2x$ Therefore, the left side of the expression is equal to the right side, which is $\frac{\sin 3x-\sin x}{\cos 3x-\cos x}=-\cot 2x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.