Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 658: 18

Answer

See the explanation below.

Work Step by Step

$\cos t\cot t=\frac{1-{{\sin }^{2}}t}{\sin t}$ Recall Trigonometric Identities, $\begin{align} & {{\sin }^{2}}t+{{\cos }^{2}}t=1 \\ & \cot t=\frac{\cos t}{\sin t} \\ \end{align}$ Use the above identities and solve the right side of the given expression, $\begin{align} & \frac{1-{{\sin }^{2}}t}{\sin t}=\frac{{{\cos }^{2}}t}{\sin t} \\ & =\cos t\cdot \frac{\cos t}{\sin t} \\ & =\cos t\cot t \end{align}$ Therefore, $\cos t\cot t=\frac{1-{{\sin }^{2}}t}{\sin t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.