Answer
$\pi$, $x_1=0$, $x_2=\frac{\pi}{4}$, $x_3=\frac{\pi}{2}$, $x_4=\frac{4\pi}{4}$, and $x_5=\pi$.
Work Step by Step
Given the function $y=4sin(2x)$, we can find its period as $p=\frac{2\pi}{2}=\pi$. We can select one period starting from $x_1=0$ and end with $x_5=\pi$. The other points are equally spaced in between, with distance $\Delta x=\frac{\pi}{4}$ and the other values are $x_2=\frac{\pi}{4}$, $x_3=\frac{\pi}{2}$, $x_4=\frac{4\pi}{4}$.