Answer
Let $\theta $ be any angle in standard position and let $p=\left( x,y \right)$ be any point besides the origin on the terminal side of $\theta $. If $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ is the distance from $\left( 0,0 \right)$ to $\left( x,y \right)$ , the trigonometric functions of $\theta $ are defined as follows:
$\begin{align}
& \sin \theta =\underline{\frac{y}{r}}\text{ }\csc \theta =\underline{\frac{r}{y}} \\
& cos\theta =\underline{\frac{x}{r}}\text{ }\sec \theta =\underline{\frac{r}{x}} \\
& \tan \theta =\underline{\frac{y}{x}}\text{ cot}\theta =\underline{\frac{x}{y}} \\
\end{align}$.
Work Step by Step
Given above.