Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.2 - Trigonometric Functions: The Unit Circle - Exercise Set - Page 549: 90

Answer

If $f\left( -x \right)=f\left( x \right)$ , then the function is even; if the function has symmetry about the y-axis, then it will be an even function.

Work Step by Step

We know that even trigonometric functions can be checked by the following steps: Step I: If $f\left( -x \right)=f\left( x \right)$ , then it will be an even function. Step II: Graphically, if the function has symmetry about the y-axis, then it will be an even function. $\begin{align} & \sin \left( -x \right)=-\sin x \\ & \cos \left( -x \right)=\cos x \\ & \tan \left( -x \right)=-\tan x \\ \end{align}$ Similarly, $\begin{align} & \operatorname{cosec}\left( -x \right)=-\operatorname{cosec}x \\ & \sec \left( -x \right)=\sec x \\ & \cot \left( -x \right)=-\cot x \\ \end{align}$ Thus, if any trigonometric function has $f\left( -x \right)=f\left( x \right)$, then it will be an even function, and among six trigonometric functions, $\cos x,\text{ and }\sec x$ are even trigonometric functions. For example: $\begin{align} & \cos \left( -\frac{\pi }{4} \right)=\cos \frac{\pi }{4} \\ & \sec \left( -\frac{\pi }{4} \right)=\sec \frac{\pi }{4} \\ \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.