Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.1 - Angles and Radian Measure - Exercise Set - Page 534: 123

Answer

The required solution is $\text{1815}\ \text{miles}$

Work Step by Step

The angle $\theta $ between Miami and the equator is $26{}^\circ $. Now, convert it into radians: $\begin{align} & \theta =26{}^\circ \\ & =26{}^\circ \left( \frac{\pi }{180{}^\circ } \right) \\ & =\frac{13\pi }{90} \end{align}$ And the radius $r$ of the earth is $4000\ \text{miles}$. The distance $s$ between Miami and the equator is given by $s=r\theta $ Put $4000\ \text{miles}$ for $r$ and $\frac{13\pi }{90}$ for $\theta $: $\begin{align} & s=4000\ \text{miles}\left( \frac{13\pi }{90} \right) \\ & =\frac{5200\pi \ \text{miles}}{9} \end{align}$ Put $\pi =3.14159$: $\begin{align} & s=\frac{5200\left( 3.14159 \right)\ \text{miles}}{9} \\ & =1815.14\ \text{miles}\approx \text{1815}\ \text{miles} \end{align}$ Hence, Miami, Florida is $\text{1815}\ \text{miles}$ north of the equator.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.