Answer
$ A=4121 e^{0.00596t}$
Work Step by Step
Consider the equation $ A=A_0 e^{kt}$ ...(1)
Find $ t= 2050-2010=40$ years
We need to simply equation (1) to obtain the expression for $ k $.
$ kt = \ln [\dfrac{A}{A_0}]$
or, $ k=\dfrac{1}{t} \ln [\dfrac{A}{A_0}]$
Plug in the given data.
$ k=\dfrac{1}{40} \times \ln [\dfrac{5231}{4121}]$
or, $ k=0.025 \times \ln (1.269) =0.00596$
Thus, the population of Asia in millions, $ t $ years after 2010 is: $ A=4121 e^{0.00596t}$