Answer
False.
A possible true statement: $ e^{x}=\ln e^{e^{x}}$
Work Step by Step
Substituting $ x=e $, the LHS equals $ e^{e},$
and the RHS equals $\displaystyle \frac{1}{\ln e}=\frac{1}{1}=1$, so the statement is false (we can find an x for which the equation is false).
To make it true, write an expression involving $\ln $ so it equals $ e^{x}$.
For example, we know that $\ln e^{y}=y $, so we put $ y=e^{x}:$
$\ln e^{e^{x}}=e^{x}$