Answer
$(0, +\infty)$;
$(-\infty, +\infty)$
Work Step by Step
RECALL:
$y=\log_b{x} \longleftrightarrow b^y=x$, where $x \gt 0$, $b\gt 0$, and $b\ne 1$.
Since $x \gt 0$, the domain of the logarithmic function is $(0, +\infty)$.
There are no restrictions on $y$, so the range is the set of all real numbers, or $(-\infty, +\infty)$.
Thus, the domain of the given function is $(0, +\infty)$, and the range is $(-\infty, +\infty)$.