Answer
a) The value of $ k $ is $0.036$.
b) The Hispanic resident population in the year 2015 was $60.\text{6 million}$.
c) $ t=19$ corresponds to the year 2019.
Work Step by Step
(a)
Consider the function
$ A=35.3{{e}^{kt}}$
In $2010$, the population was 50.5 million.
For the year $2000$, $ t=0$.
The corresponding value for year $2010$ is $ t=10$.
Now, compute the value of $ k $.
Substitute $ t=10,\ A=50.5$
So,
$\begin{align}
& A=35.3{{e}^{kt}} \\
& 50.5=35.3{{e}^{k\left( 10 \right)}} \\
& {{e}^{10k}}=\frac{50.5}{35.3}
\end{align}$
Take the natural logarithm ${{\log }_{e}}$ on both sides
$\begin{align}
& {{e}^{10k}}=\frac{50.5}{35.3} \\
& \ln \left( {{e}^{10k}} \right)=\ln \left( \frac{50.5}{35.3} \right) \\
& 10k=\ln \left( \frac{50.5}{35.3} \right) \\
& k=\frac{\ln \left( \frac{50.5}{35.3} \right)}{10}
\end{align}$
Now, use the calculator
Therefore, the value of $ k $ up to three decimal places is $0.036$.
(b)
Consider the function as follows:
In the year $2010$, the population was 50.5 million.
For the year $2000$, $ t=0$. So, for the year $2015$, $ t=15$.
Now, calculate the value of population in the year 2015.
Put $ t=15,\ k=0.036$
So,
$\begin{align}
& A=35.3{{e}^{kt}} \\
& A=35.3{{e}^{\left( 0.036 \right)\left( 15 \right)}} \\
& =35.3{{e}^{0.54}}
\end{align}$
So, the value is
$\begin{align}
& A=35.3{{e}^{0.54}} \\
& \approx 60.\text{6 million}
\end{align}$
Therefore, the population in the year 2015 is $60.\text{6 million}$.
(c)
Consider the function as follows:
$ A=35.3{{e}^{kt}}$
In the year $2010$, the population was 50.5 million.
For the year 2000, $ t=0$.
Now, calculate the year when the population reaches 70 million.
Put $ A=70,\ k=0.036$
So,
$\begin{align}
& A=35.3{{e}^{kt}} \\
& 70=35.3{{e}^{\left( 0.036 \right)\left( t \right)}} \\
& {{e}^{0.036t}}=\frac{70}{35.3}
\end{align}$
Take the natural logarithm ${{\log }_{e}}$ on both sides as follows:
$\begin{align}
& {{e}^{0.036t}}=\frac{70}{35.3} \\
& \ln \left( {{e}^{0.036t}} \right)=\ln \left( \frac{70}{35.3} \right) \\
& 0.036t=\ln \left( \frac{70}{35.3} \right) \\
& t=\frac{\ln \left( \frac{70}{35.3} \right)}{0.036}
\end{align}$
Now, use the calculator to obtain the value of $t$.
So, the value is:
$\begin{align}
& t=\frac{\ln \left( \frac{70}{35.3} \right)}{0.036} \\
& =19.017 \\
& \approx 19
\end{align}$
Therefore, $t=19$ corresponds to the year 2019.