Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Review Exercises - Page 514: 86

Answer

a) The value of $ k $ is $0.036$. b) The Hispanic resident population in the year 2015 was $60.\text{6 million}$. c) $ t=19$ corresponds to the year 2019.

Work Step by Step

(a) Consider the function $ A=35.3{{e}^{kt}}$ In $2010$, the population was 50.5 million. For the year $2000$, $ t=0$. The corresponding value for year $2010$ is $ t=10$. Now, compute the value of $ k $. Substitute $ t=10,\ A=50.5$ So, $\begin{align} & A=35.3{{e}^{kt}} \\ & 50.5=35.3{{e}^{k\left( 10 \right)}} \\ & {{e}^{10k}}=\frac{50.5}{35.3} \end{align}$ Take the natural logarithm ${{\log }_{e}}$ on both sides $\begin{align} & {{e}^{10k}}=\frac{50.5}{35.3} \\ & \ln \left( {{e}^{10k}} \right)=\ln \left( \frac{50.5}{35.3} \right) \\ & 10k=\ln \left( \frac{50.5}{35.3} \right) \\ & k=\frac{\ln \left( \frac{50.5}{35.3} \right)}{10} \end{align}$ Now, use the calculator Therefore, the value of $ k $ up to three decimal places is $0.036$. (b) Consider the function as follows: In the year $2010$, the population was 50.5 million. For the year $2000$, $ t=0$. So, for the year $2015$, $ t=15$. Now, calculate the value of population in the year 2015. Put $ t=15,\ k=0.036$ So, $\begin{align} & A=35.3{{e}^{kt}} \\ & A=35.3{{e}^{\left( 0.036 \right)\left( 15 \right)}} \\ & =35.3{{e}^{0.54}} \end{align}$ So, the value is $\begin{align} & A=35.3{{e}^{0.54}} \\ & \approx 60.\text{6 million} \end{align}$ Therefore, the population in the year 2015 is $60.\text{6 million}$. (c) Consider the function as follows: $ A=35.3{{e}^{kt}}$ In the year $2010$, the population was 50.5 million. For the year 2000, $ t=0$. Now, calculate the year when the population reaches 70 million. Put $ A=70,\ k=0.036$ So, $\begin{align} & A=35.3{{e}^{kt}} \\ & 70=35.3{{e}^{\left( 0.036 \right)\left( t \right)}} \\ & {{e}^{0.036t}}=\frac{70}{35.3} \end{align}$ Take the natural logarithm ${{\log }_{e}}$ on both sides as follows: $\begin{align} & {{e}^{0.036t}}=\frac{70}{35.3} \\ & \ln \left( {{e}^{0.036t}} \right)=\ln \left( \frac{70}{35.3} \right) \\ & 0.036t=\ln \left( \frac{70}{35.3} \right) \\ & t=\frac{\ln \left( \frac{70}{35.3} \right)}{0.036} \end{align}$ Now, use the calculator to obtain the value of $t$. So, the value is: $\begin{align} & t=\frac{\ln \left( \frac{70}{35.3} \right)}{0.036} \\ & =19.017 \\ & \approx 19 \end{align}$ Therefore, $t=19$ corresponds to the year 2019.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.