Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Test - Page 434: 15

Answer

$x=\left\{ \left( -3+\sqrt{11} \right),\left( -3-\sqrt{11} \right),-3 \right\}$

Work Step by Step

It is observed that $x=-3$ satisfies the polynomial using the hit-and-trial method $\begin{align} & f\left( -3 \right)={{x}^{3}}+9{{x}^{2}}+16x-6 \\ & ={{\left( -3 \right)}^{3}}+9{{\left( -3 \right)}^{2}}+16\left( -3 \right)-6 \\ & =-27+81-48-6 \\ & =0 \end{align}$ Thus, $\left( x+3 \right)$ is a factor of the given polynomial. Now, using the long division method: $\left( x+3 \right)\overset{{{x}^{2}}+6x-2}{\overline{\left){\begin{align} & {{x}^{3}}+9{{x}^{2}}+16x-6 \\ & \pm {{x}^{3}}\pm 3{{x}^{2}} \\ & \overline{\begin{align} & 6{{x}^{2}}+16x-6 \\ & \pm 6{{x}^{2}}\pm 18x \\ & \overline{\begin{align} & -2x-6 \\ & \underline{\mp 2x\mp 6} \\ & 0 \\ \end{align}} \\ \end{align}} \\ \end{align}}\right.}}$ Thus, the factors of the polynomial are $\left( x+3 \right)\left( {{x}^{2}}+6x-2 \right)$. Then, we can write the given polynomial function as $\begin{align} & f\left( x \right)={{x}^{3}}+9{{x}^{2}}+16x-6 \\ & =\left( x+3 \right)\left( {{x}^{2}}+6x-2 \right) \end{align}$ To find the solution of the polynomial we equate each factor to 0: $\begin{align} & x+3=0 \\ & x=-3 \end{align}$ Or, ${{x}^{2}}+6x-2=0$ Solving the quadratic equation ${{x}^{2}}+6x-2=0$ using the quadratic formula, we get: $x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ Put: $\begin{align} & a=1 \\ & b=6 \\ & c=-2 \end{align}$ $\begin{align} & x=\frac{-6\pm \sqrt{{{\left( 6 \right)}^{2}}-4\left( 1 \right)\left( -2 \right)}}{2\left( 1 \right)} \\ & x=\frac{-6\pm \sqrt{36+8}}{2} \\ & x=\frac{-6\pm \sqrt{44}}{2} \\ & x=\frac{-6\pm 2\sqrt{11}}{2} \\ \end{align}$ $x=-3\pm \sqrt{11}$ Hence, all the roots of the given polynomial are $x=\left\{ \left( -3+\sqrt{11} \right),\left( -3-\sqrt{11} \right),-3 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.