Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.6 - Rational Functions and Their Graphs - Exercise Set - Page 402: 113

Answer

The graph of the rational function, $f\left( x \right)=\frac{3{{x}^{2}}+1}{{{x}^{2}}+2}$ , will be:

Work Step by Step

Take the rational function; $f\left( x \right)=\frac{3{{x}^{2}}+1}{{{x}^{2}}+2}$. The equation of the horizontal line is the ratio of the coefficient of the higher degree term of the numerator and denominator. So, $\begin{align} & y=\frac{3}{1} \\ & =3 \end{align}$ The conditions that are given are $x\to -\infty $ and $f\left( x \right)\to 3$ , Then, $\begin{align} & \underset{x\to -\infty }{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{3{{x}^{2}}+1}{{{x}^{2}}+2} \\ & =\underset{x\to -\infty }{\mathop{\lim }}\,\frac{{{x}^{2}}\left( 3+\frac{1}{{{x}^{2}}} \right)}{{{x}^{2}}\left( 1+\frac{2}{{{x}^{2}}} \right)} \\ & =\underset{x\to -\infty }{\mathop{\lim }}\,\frac{\left( 3+\frac{1}{{{x}^{2}}} \right)}{\left( 1+\frac{2}{{{x}^{2}}} \right)} \\ & =3 \end{align}$ Which satisfies the given condition. Hence, it is the required function.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.