Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.2 - Quadratic Functions - Exercise Set - Page 333: 97

Answer

The statement is False. The maximum value of the function is $\frac{5}{4}$.

Work Step by Step

The general form of a quadratic function is defined as $f\left( x \right)=a{{x}^{2}}+bx+c$. When $a<0,$ the maximum value exists. In order to find the maximum value, calculate $x=-\frac{b}{2a}.$ Putting in the value of a, b in $x=-\frac{b}{2a}$: Thus, $\begin{align} & x=-\frac{1}{2\left( -1 \right)} \\ & =\frac{1}{2} \end{align}$ Therefore, at $x=\frac{1}{2}$ the value of the function is a maximum. Calculate the maximum value of the function as: $\begin{align} & f\left( \frac{1}{2} \right)=-{{\left( \frac{1}{2} \right)}^{2}}+\frac{1}{2}+1 \\ & =-\frac{1}{4}+\frac{1}{2}+1 \\ & =\frac{-1+2+4}{4} \\ & =\frac{5}{4} \end{align}$ So, the maximum value of the quadratic function is $\frac{5}{4}$ at $x=\frac{1}{2}$. Hence, the provided statement is false.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.