Answer
The standard form of the expression $\left( -4-8i \right)\left( 3+i \right)$ is $-4-28i$.
Work Step by Step
Consider the expression $\left( -4-8i \right)\left( 3+i \right)$.
Use the FOIL method.
$\left( -4-8i \right)\left( 3+i \right)=-12-4i-24i-8{{i}^{2}}$
Replace the value ${{i}^{2}}=-1$.
$\left( -4-8i \right)\left( 3+i \right)=-12-4i-24i-8\left( -1 \right)$
Make a group of real and imaginary terms.
$\left( -4-8i \right)\left( 3+i \right)=-12+8-4i-24i$
Simplify the real and imaginary terms.
$\begin{align}
& \left( -4-8i \right)\left( 3+i \right)=\left( -12+8 \right)+\left( -4-24 \right)i \\
& =-4-28i
\end{align}$
Therefore, the standard form of the expression $\left( -4-8i \right)\left( 3+i \right)$ is $-4-28i$.