Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Concept and Vocabulary Check - Page 1174: 3

Answer

The derivative of $f$ at x, denoted by $f'\left( x \right)$, is defined by $\underset{h\to 0}{\mathop{\lim }}\,$ $\frac{f\left( x+h \right)-f\left( x \right)}{h}$ provided that this limit exists.

Work Step by Step

Consider the provided statement, The derivative of $f$, denoted as $f'\left( x \right)$, is defined by $\underset{h\to 0}{\mathop{\lim }}\,$ $\frac{f\left( x+h \right)-f\left( x \right)}{h}$ provided that this limit exists. For example, Consider the function $f\left( x \right)=2{{x}^{2}}$ The derivative of the function $f\left( x \right)=2{{x}^{2}}$ is denoted by $f'\left( x \right)$ and is defined by, $\begin{align} & \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{2{{\left( x+h \right)}^{2}}-2{{x}^{2}}}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{2{{x}^{2}}+2{{h}^{2}}+4xh-2{{x}^{2}}}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{2{{h}^{2}}+4xh}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\left( 2h+4x \right) \end{align}$ Taking the limit inside, $\begin{align} & \underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}=2\underset{h\to 0}{\mathop{\lim }}\,h+4x \\ & =4x \end{align}$ Thus, $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}=4x$ Therefore, the derivative of $f$ at x, denoted by $f'\left( x \right)$, is defined by $\underset{h\to 0}{\mathop{\lim }}\,$ $\frac{f\left( x+h \right)-f\left( x \right)}{h}$ provided that this limit exists.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.