Answer
The required probability is, $\frac{59}{121}\approx 0.49$
Work Step by Step
We know that from the provided table,
$ P\left( \text{male} \right)=\frac{\text{number of persons who are males}}{\text{total number of U}\text{.S adults}}$
Thus,
$\begin{align}
& P\left( \text{male} \right)=\frac{118}{242} \\
& =\frac{59}{121} \\
& \approx 0.49
\end{align}$