Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Section 10.5 - The Binomial Theorum - Exercise Set - Page 1094: 91

Answer

The value of $\frac{n!}{\left( n-r \right)!\times r!}$ for $ n=8$ and $ r=3$ is $56$.

Work Step by Step

The given expression is $\frac{n!}{\left( n-r \right)!\times r!}$ Put $ n=8$ and $ r=3$ in the expression $\frac{n!}{\left( n-r \right)!\times r!}$ and simplify, $\begin{align} & \frac{n!}{\left( n-r \right)!\times r!}=\frac{8!}{\left( 8-3 \right)!\times 3!} \\ & =\frac{8!}{5!\times 3!} \end{align}$ It is known that $\begin{align} & n!=n\times \left( n-1 \right)\times \left( n-2 \right)\times \left( n-3 \right)..........3\times 2\times 1 \\ & =n\times \left( n-1 \right)! \end{align}$ $\begin{align} & n!=\frac{8\times 7\times 6\times 5!}{5!\times 3\times 2\times 1} \\ & =\frac{8\times 7\times 6}{3\times 2\times 1} \\ & =56 \end{align}$ Thus, the value of $\frac{n!}{\left( n-r \right)!\times r!}$ for $ n=8$ and $ r=3$ is $56$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.