Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Cumulative Review Exercises - Page 1127: 14

Answer

The value of x is $\left\{ \ln 2,\ln 4 \right\}$.

Work Step by Step

Consider the expression ${{e}^{2x}}-6{{e}^{x}}+8=0$ Simplify ${{e}^{2x}}$ ${{e}^{2x}}={{\left( {{e}^{x}} \right)}^{2}}$ Now, take ${{e}^{x}}=u $ So, the equation will be: ${{u}^{2}}-6u+8=0$ Factorize the above equation as follows: $\begin{align} & {{u}^{2}}-6u+8=0 \\ & {{u}^{2}}-4u-2u+8=0 \\ & u\left( u-4 \right)-2\left( u-4 \right)=0 \\ & \left( u-4 \right)\left( u-2 \right)=0 \end{align}$ So, the factors are: $\begin{align} & \left( u-4 \right)=0 \\ & u=4 \end{align}$ Or, $\begin{align} & \left( u-2 \right)=0 \\ & u=2 \end{align}$ Now, substitute the value of $ u=4$ in equation ${{e}^{x}}=u $: $\begin{align} & {{e}^{x}}=u \\ & {{e}^{x}}=4 \\ \end{align}$ Take natural log on both sides; $\begin{align} & \ln \left( {{e}^{x}} \right)=\ln \left( 4 \right) \\ & x=\ln \left( 4 \right) \end{align}$ Now, substitute the value of $ u=2$ in equation ${{e}^{x}}=u $: $\begin{align} & {{e}^{x}}=u \\ & {{e}^{x}}=2 \\ \end{align}$ Take natural log on both sides; $\begin{align} & \ln \left( {{e}^{x}} \right)=\ln \left( 2 \right) \\ & x=\ln \left( 2 \right) \end{align}$ Hence, the value of x in the expression ${{e}^{2x}}-6{{e}^{x}}+8=0$ is $\left\{ \ln 2,\ln 4 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.