Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.5 - More on Slope - Concept and Vocabulary Check - Page 225: 7

Answer

A function expresses an object’s position, $s\left( t \right)$ , in terms of time $t$. The average velocity of the object from ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=6\text{ seconds}$ is $\frac{\Delta s}{\Delta t}=$ $\frac{s\left( 6 \right)-s\left( 3 \right)}{6-3}$.”

Work Step by Step

The average rate of change of $f$ is given as; $\frac{\Delta y}{\Delta x}=\frac{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}$ The mathematical symbol$\frac{\Delta y}{\Delta x}$ represents the change in y divided by the change in $x$. For example, consider the function $s\left( t \right)$ at ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=6\text{ seconds}$. The rate of change is calculated by the substitution of the value as ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=6\text{ seconds}$ and $s\left( {{t}_{1}} \right)=s\left( 3 \right)\text{ and }s\left( {{t}_{2}} \right)=s\left( 6 \right)$. $\begin{align} & \frac{\Delta s}{\Delta t}=\frac{s\left( {{t}_{2}} \right)-s\left( {{t}_{1}} \right)}{{{t}_{2}}-{{t}_{1}}} \\ & =\frac{s\left( 6 \right)-s\left( 3 \right)}{6-3} \end{align}$ The average velocity of the object from ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=6\text{ seconds}$ is $\frac{\Delta s}{\Delta t}=\frac{s\left( 6 \right)-s\left( 3 \right)}{6-3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.