Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.3 - More on Functions and Their Graphs - Exercise Set - Page 196: 6

Answer

a) the maximum value will be 30 at the point $x=1$. b) the minimum value will be 3 at $x=4$.

Work Step by Step

(a) Let us consider the function $2{{x}^{3}}-15{{x}^{2}}+24x+19$. In order to calculate the local maxima or minima, differentiate the function with respect to x and put it equal to zero as follows: $\begin{align} & \frac{\text{d}\left( 2{{x}^{3}}-15{{x}^{2}}+24x+19 \right)}{\text{d}x}=0 \\ & 2\left( 3{{x}^{2}} \right)-15\left( 2x \right)+24+0=0 \\ & 6{{x}^{2}}-30x+24=0 \\ & {{x}^{2}}-5x+4=0 \end{align}$ Now simplify the above equation further to find the zeros: $\begin{align} & {{x}^{2}}-4x-x+4=0 \\ & x\left( x-4 \right)-1\left( x-4 \right)=0 \\ & \left( x-4 \right)\left( x-1 \right)=0 \\ & x=4\text{ and }x=1 \end{align}$ Substitute $x=4\text{ and }x=1$ one by one in the main equation For $x=4$ $\begin{align} & 2{{\left( 4 \right)}^{3}}-15{{\left( 4 \right)}^{2}}+24\left( 4 \right)+19=128-240+96+19 \\ & =3 \end{align}$ And for $x=1$ $\begin{align} & 2{{\left( 1 \right)}^{3}}-15{{\left( 1 \right)}^{2}}+24\left( 1 \right)+19=2-15+24+19 \\ & =30 \end{align}$ Thus, the higher value among the two values is 30. So, the maximum value will be 30 at the point $x=1$. (b) Let us consider the function $2{{x}^{3}}-15{{x}^{2}}+24x+19$. In order to calculate the local maxima or minima, differentiate the function with respect to x as follows: $\begin{align} & \frac{\text{d}\left( 2{{x}^{3}}-15{{x}^{2}}+24x+19 \right)}{\text{d}x}=0 \\ & 2\left( 3{{x}^{2}} \right)-15\left( 2x \right)+24+0=0 \\ & 6{{x}^{2}}-30x+24=0 \\ & {{x}^{2}}-5x+4=0 \end{align}$ Now simplify the equation further and get the zeros as follows: $\begin{align} & {{x}^{2}}-4x-x+4=0 \\ & x\left( x-4 \right)-1\left( x-4 \right)=0 \\ & \left( x-4 \right)\left( x-1 \right)=0 \\ & x=4\text{ and }x=1 \end{align}$ Substitute $x=4\text{ and }x=1$ one by one in the main equation For $x=4$ $\begin{align} & 2{{\left( 4 \right)}^{3}}-15{{\left( 4 \right)}^{2}}+24\left( 4 \right)+19=128-240+96+19 \\ & =3 \end{align}$ And for $x=1$ $\begin{align} & 2{{\left( 1 \right)}^{3}}-15{{\left( 1 \right)}^{2}}+24\left( 1 \right)+19=2-15+24+19 \\ & =30 \end{align}$ Thus, the lower value among the two values is 3.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.