Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.10 - Modeling with Functions - Exercise Set - Page 296: 67

Answer

The solution set of the equation is\[\left\{ 28 \right\}\]

Work Step by Step

Consider the equation is: $\frac{2x+1}{9}-\frac{x+4}{6}=1$ Take the LCM of the above equation: $\begin{align} & \frac{4\left( 2x+1 \right)-6\left( x+4 \right)}{36}=1 \\ & \frac{8x+4-6x-24}{36}=1 \\ & \frac{2x-20}{36}=1 \\ & 2x-20=36 \end{align}$ Further solve the above expression. $\begin{align} & 2x=56 \\ & x=\frac{56}{2} \\ & x=28 \end{align}$ Therefore, the value of $x$ is 28. Check: Put $\left( x=28 \right)$ in the provided equation and verify, $\begin{align} \frac{2\left( 28 \right)+1}{9}-\frac{28+4}{6}\overset{?}{\mathop{=}}\,1 & \\ \frac{56+1}{9}-\frac{32}{6}\overset{?}{\mathop{=}}\,1 & \\ \frac{57}{9}-\frac{32}{6}\overset{?}{\mathop{=}}\,1 & \\ \frac{19}{3}-\frac{16}{3}\overset{?}{\mathop{=}}\,1 & \\ \end{align}$ Further, simplify $\begin{align} \frac{19}{3}-\frac{16}{3}\overset{?}{\mathop{=}}\,1 & \\ \frac{19-16}{3}\overset{?}{\mathop{=}}\,1 & \\ \frac{3}{3}\overset{?}{\mathop{=}}\,1 & \\ 1=1 & \\ \end{align}$ This is true. Hence, the solution set of the equation is $\left\{ 28 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.