Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.10 - Modeling with Functions - Exercise Set - Page 294: 36

Answer

The distance of a point $P\left( x,y \right)$ from the origin in terms of the point’s $x\text{-coordinate}$ is, $d=\sqrt{{{x}^{4}}-15{{x}^{2}}+64}$

Work Step by Step

The distance of a point $P\left( x,y \right)$ from the origin is $\begin{align} & d=\sqrt{{{\left( x-0 \right)}^{2}}+{{\left( y-0 \right)}^{2}}} \\ & =\sqrt{{{x}^{2}}+{{y}^{2}}} \end{align}$ Substitute ${{x}^{2}}-8$ for $y$ in the above equation $d=\sqrt{{{x}^{2}}+{{\left( {{x}^{2}}-8 \right)}^{2}}}$ Use the formula ${{\left( A-B \right)}^{2}}={{A}^{2}}-2AB+{{B}^{2}}$ in the above equation $\begin{align} & d=\sqrt{{{x}^{2}}+{{x}^{4}}-16{{x}^{2}}+64} \\ & =\sqrt{{{x}^{4}}-15{{x}^{2}}+64} \end{align}$ The required distance of a point $P\left( x,y \right)$ from the origin in terms of the point’s $x\text{-coordinate}$ is, $d=\sqrt{{{x}^{4}}-15{{x}^{2}}+64}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.