Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.10 - Modeling with Functions - Concept and Vocabulary Check - Page 291: 5

Answer

The distance, d, from $\left( x,y \right)$ to the origin is $d=\sqrt{{{x}^{2}}+{{y}^{2}}}$. If $\left( x,y \right)$ lies on the graph of $y={{x}^{3}}$ , we can replace y with ${{x}^{3}}$ in the formula for d. Thus $d\left( x \right)=\sqrt{{{x}^{2}}+{{x}^{6}}}$.

Work Step by Step

Consider the statement: $\left( x,y \right)$ is assumed to be a point on the graph of $y={{x}^{3}}$. Distance, d of a point $\left( x,y \right)$ from the origin $\left( 0,0 \right)$ Use distance formula: $d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ , Substitute the coordinates of point $P\left( x,y \right)$ and the origin $\left( 0,0 \right)$ in $d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ $\begin{align} & d=\sqrt{{{\left( x-0 \right)}^{2}}+{{\left( y-0 \right)}^{2}}} \\ & =\sqrt{{{x}^{2}}+{{y}^{2}}} \end{align}$ Substituting the value of y from $y={{x}^{3}}$ , d becomes: $\begin{align} & d\left( x \right)=\sqrt{{{x}^{2}}+{{y}^{2}}} \\ & =\sqrt{{{x}^{2}}+{{\left( {{x}^{3}} \right)}^{2}}} \\ & =\sqrt{{{x}^{2}}+{{x}^{6}}} \end{align}$ Hence, the distance, d, from $\left( x,y \right)$ to the origin is $d=\sqrt{{{x}^{2}}+{{y}^{2}}}$. If $\left( x,y \right)$ lies on the graph of $y={{x}^{3}}$ , we can replace y with ${{x}^{3}}$ in the formula for d. Thus $d\left( x \right)=\sqrt{{{x}^{2}}+{{x}^{6}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.