Answer
$v=9i-4j$;
magnitude $= \sqrt{97}$
Work Step by Step
If a vector $v$ initiates at point $P(x_1,y_1)$ and terminates at $Q(x_2,y_2)$ then
$v=(x_2-x_1,y_2-y_1)\\
v=(x_2-x_1)i+(y_2-y_1)j$
Hence, here we have
$v=[5-(-4)]i+(-1-3)j\\
v=9i-4j$
The magnitude of a vector $v=ai+bj$ is:
$||v||=\sqrt{a^2+b^2}$.
Hence,
$||v||=\sqrt{9^2+(-4)^2}\\
||v||=\sqrt{81+16}\\
||v||=\sqrt{97}.$