Answer
$P \approx \$1,845.02$
Work Step by Step
RECALL:
The formula for the future value $A$ is:
$A=P(1+rt)$
where
P = principal amount borrowed
r = interest rate per year
t = time in years
Divide $(1+rt)$ on both sides of the formula given above to obtain:
$\dfrac{A}{1+rt}=P$
Thus, the principal or present value $P$ can be found using the formula above.
Use the formula above and the given values in the problem to obtain:
$P=\dfrac{\$2000}{1+12.6\% \cdot \frac{8}{12}}
\\P=\dfrac{\$2000}{1+0.126 \cdot 0.\overline{6}}
\\P=\dfrac{\$2000}{1+0.084}
\\P=\dfrac{\$2000}{1.084}
\\P=\$1,845.01845
\\P \approx \$1,845.02$